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Abstract
We study the magnetic and superconducting instabilities of the periodic
Anderson model with infinite Coulomb repulsion U in the random-phase
approximation. The Néel temperature and the superconducting critical
temperature are obtained as functions of electronic density (chemical pressure)
and hybridization V (pressure). It is found that close to the region where the
system exhibits magnetic order the critical temperature Tc is much smaller than
the Néel temperature, in qualitative agreement with some TN/Tc ratios found for
some heavy-fermion materials. In our study, the magnetic and superconducting
physical behaviour of the system has its origin in the fluctuating boson fields
effecting the infinite on-site Coulomb repulsion among the f electrons.

1. Introduction

The superconducting and magnetic properties of heavy-fermion materials have recently
attracted much attention because of their non-conventional character [1, 2]. These materials
have very large specific heat coefficients γ , indicating very large effective quasi-
particle masses, hence the designation heavy fermions. Some of these materials order
antiferromagnetically at low temperatures (examples include UAgCu4, UCu7, U2Zn17) while
others (such as UBe13, CeCu2Si2, UPt3) order in a superconducting state and others show no
ordering (such as CeAl3, UAuPt4, CeCu6, UAl2) [1]. Some compounds exhibit phases where
antiferromagnetic order coexists with unconventional superconductivity. Examples include:
UPd2Al3 (TN = 14.3 K and Tc = 2 K), UNi2Al3 (TN = 4.5 K and Tc = 1.2 K), CePd2Si2
(TN ∼ 10 K and Tc ∼ 0.5 K) and CeIn3 (TN ∼ 10 K and Tc ∼ 0.15 K). In the prototype
heavy-fermion system CexCu2Si2 the coexistence of d-wave superconductivity and magnetic
order was clearly identified in a small range of x-values around x � 0.99 [3].
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Systems that exhibit both superconductivity and antiferromagnetism at low temperature
have ratios between the Néel temperature TN and the superconducting critical temperature Tc

of the order of TN/Tc ∼ 1–100. The coexistence of the two types of order can be tuned by
external parameters such as external pressure or changes in the stoichiometry [3, 4].

A description of the normal-state properties of the heavy-fermion systems has been
attempted assuming a generalization of the impurity Anderson model to the lattice [5, 6].
In the Anderson lattice the energy of a single electron in an f orbital (e.g. 4f1) is ε0, and the
energy of two electrons in the same f orbital (4f2) is 2ε0 + U , where U is the on-site Coulomb
repulsion. The energy of the 4f2 state is much larger than the energy of the 4f1 state. Thus, if
the charge fluctuations at the f orbital are small, the 4f1 electron may behave as a local moment.

The complexity of heavy-fermion systems arises from the interplay between Kondo
screening of local moments, the antiferromagnetic Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction between the moments and the superconducting correlations between the heavy
quasi-particles. The local moments form in partially filled f shells of Ce and U ions. The
absence of magnetic order in some cases could perhaps be due to complete Kondo screening
(below the Kondo temperature TK ) or to a spin liquid arrangement of the local moments. In the
normal non-magnetic state the Anderson-lattice model predicts Fermi-liquid-like behaviour
and explains the main features at low temperatures, such as the large effective masses and the
Kondo resonance near the Fermi level. But the main technical difficulty is the competition
between the Kondo compensation of the localized spins and the magnetic interaction between
them. This interaction is mediated by the conduction electrons (RKKY type). Related to this
competition is the effectiveness of the compensating cloud around each f site. The size of
this cloud has been a subject of controversy. While some arguments show that it should be
of large scale, of the order of vF /TK [7], other arguments claim it to be ∼a (a is the lattice
constant) [8]. This is a significant issue and is related to Nozières exhaustion problem which
states that there are not enough conduction electrons to screen the f moments.

It has been proposed that the mechanism for superconductivity lies in the strong Coulomb
interaction between the f electrons, not in a phonon-mediated attraction. Using Coleman’s [9]
slave-boson formalism together with a large-N approach, various attempts have been made
to search for the existence of an effective interaction which might be responsible for
superconductivity in the infinite-U Anderson-lattice model. It was proposed [10] that slave-
boson fluctuations can provide an effective attraction between the electrons to leading order
in 1/N . Later, a calculation of the electron–electron scattering amplitude to order 1/N2

revealed an effective attractive interaction in the p and d channels, which was interpreted
as a manifestation of the RKKY interaction, showing that spin fluctuations are an important
mechanism [11]. The inclusion of f0, f1 and f2 states, using two sets of slave bosons, was
also considered in the context of the Anderson lattice as a possible description of high-Tc

superconductors [12].
The magnetic order in the ground state of Kondo insulators has been studied by Dorin

and Schlottmann [13] in the framework of the Anderson-lattice model. The same authors later
studied the effect of orbital degeneracy and finite U on a ferromagnetic ground state (their
approach did not generate RKKY interactions, thus preventing the study of antiferromagnetic
order) [14].

In this work we consider the slave-boson approach to the infinite-U Anderson-lattice
model. We treat the boson fields at the mean-field level, thereby enforcing the constraint
of one f electron (at most) per site only on average. By splitting the boson operator into a
condensate part and an above-the-condensate term, which describes fluctuations, we compute
the magnetic and pairing susceptibilities at the random-phase-approximation (RPA) level. For
spin-1/2 particles the condensate density at moderate temperatures does not change much
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relative to its ground-state value. Therefore we do not expect our results to be of lower quality
than those characterizing the ground-state properties. We search for the critical temperatures
(TN and Tc) at which antiferromagnetic order or superconducting (s- or d-wave) pairing occurs
in a normal non-magnetic system. We find that the value of Tc is much smaller than the magnetic
temperature TN . Unlike TN , the superconducting temperature monotonically increases with
externally applied pressure.

2. The model and the RPA solution

The PAM Hamiltonian is given by

H = H 0
c + H 0

f + Hcf + HU, (1)

where

H 0
f =

∑
i,σ

(ε0 − µ)f
†
i,σ fi,σ , (2)

H 0
c =

∑
�k,σ

(ε�k − µ)c
†
�k,σ

c�k,σ , (3)

Hcf = V
∑
i,σ

(c
†
i,σ fi,σ + f

†
i,σ ci,σ ), (4)

HU = U
∑

i,

ni,↑ni,↓. (5)

The operators c and f are fermionic and obey the usual anti-commutation relations. The
hybridization potential V is assumed to be momentum independent. The term HU represents
the strong on-site repulsion between the f orbitals. We consider U = ∞. We implement the
condition U = ∞ within the slave-boson formulation due to Coleman [9], in which the empty
f site is represented by a slave boson bi and the physical operator fi in equation (4) is replaced
with b

†
i fi together with the constraints of only one f electron per site. The implementation

of this constraint amounts to introducing a Lagrange multiplier λ which will renormalize the
bare f-level energy from ε0 to εf = ε0 + λ. We split the boson operators into two terms:

b
†
�q =

√
N

√
zδ0,�q + B

†
�q , (6)

where z represents the boson condensate and B
†
�q represents the fluctuations above the

condensate. This procedure leads in leading order to a mean-field Hamiltonian [15, 16]. The
corresponding mean-field equations can be written in terms of the Fourier transform of the
Green functions:

Gff,σ (�k, τ − τ ′) = −〈Tτf�k,σ (τ )f
†
�k,σ

(τ ′)〉, (7)

Gcc,σ (�k, τ − τ ′) = −〈Tτ c�k,σ (τ )c
†
�k,σ

(τ ′)〉, (8)

Gcf,σ (�k, τ − τ ′) = −〈Tτ c�k,σ (τ )f
†
�k,σ

(τ ′)〉, (9)

as

z = 1 − T

Ns

∑
�k,σ

∑
iωn

Gff,σ (�k, iωn), (10)

and

εf = ε0 − V T√
zNs

∑
�k,σ

∑
iωn

Gcf,σ (�k, iωn), (11)
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where Ns denotes the number of lattice sites. Equation (10) states that the mean number of
electrons at an f site is nf = 1 − z. For a given number of particles per site, n, these equations
must be supplemented with the particle conservation condition which yields the chemical
potential µ for any temperature:

n = 1 − z +
T

Ns

∑
�k,σ

∑
iωn

Gcc,σ (�k, iωn). (12)

The fluctuations beyond the mean-field approach are described by the Hamiltonian

Hf luct = V√
N

∑
�k,�q,σ

(c
†
�k,σ

f�q,σB
†
�k−�q + B�k−�qf

†
�q,σ

c�k,σ ), (13)

and will be considered in the calculation of the magnetic susceptibility and superconducting
correlation functions below. The calculation, even at the RPA level, of the correlation functions
requires knowledge of the boson propagator. The full calculation of the latter is a technically
difficult problem in itself, and is still unsolved. There are, however, 1/N calculations of
D(�k, τ − τ ′) [6, 10, 11]. Here we follow the work of Evans and Coqblin [17] and use an
asymptotic form for the boson propagator given by

D(�k, τ − τ ′) = 〈TτB�k,σ (τ )B
†
�k,σ

(τ ′)〉 ∼ 1

λ
. (14)

We also adopt the same approximation for the propagator D̄(�k, τ −τ ′) = 〈TτB
†
�k,σ

(τ )B�k,σ (τ ′)〉.
In the calculation below we shall use mean-field fermionic propagators.

The transverse spin susceptibility for the f electrons is defined as

χ−+(�q, iωn) = µ2
B

∫ β

0
dτ eiωnτ 〈TτS

−(�q, τ )S+(�q, 0)〉, (15)

where β = 1/T is the inverse temperature, Tτ is the chronological order operator (in imaginary
time), S−(�q) = ∑

�p f
†
�p,↓f �p+�q,↑ and S+(�q) = [S−(�q)]†. The calculation at the RPA level yields

χ
f
+,−(�q, iωn) = 
̄

ff

ff (�q, iωn)[1 − J 
̄
cf

f c(�q, iωn)]

[1 − J 
̄
cf

f c(�q, iω)]2 − J 2
̄
ff

ff (�q, iωn)
̄cc
cc (�q, iωn)

, (16)

where J = V 2/(Nλ). The result (16) holds for all values of nf and is a generalization of that
obtained by Evans and Coqblin [17, 18] for the case nf = 1. The functions 
̄(�q, iωn) above
are given by


̄
ff

ff (�q, iωn) = − 1

β

∑
�p,iωm

Gff ( �p, iωm)Gff ( �p + �q, iωm + iωn),


̄cc
cc (�q, iωn) = − 1

β

∑
�p,iωm

Gcc( �p, iωm)Gcc( �p + �q, iωm + iωn),


̄
cf

f c(�q, iωn) = − 1

β

∑
�p,iωm

Gcf ( �p, iωm)Gf c( �p + �q, iωm + iωn).

There are three possible superconducting pairing susceptibilities that one can define. These
refer to Cooper pairs of either conduction or f electrons, and a hybrid Cooper pair with a
conduction and an f electron. We consider the correlation function

�dd(�q, iωn) =
∫ β

0
eiωnτ

∑
�k1,�k2

η(�k1)η(�k2)〈Tτd�k1,↓(τ )d−�k1+�q,↑(τ )d
†
�k2,↓d

†
−�k2+�q,↑〉, (17)
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where d = c, f and η(�k) is the Cooper pair structure factor, assumed to be either extended
s or d wave. The hybrid pairing correlation function is defined as

�cf (�q, iωn) =
∫ β

0
eiωnτ

∑
�k1,�k2

〈Tτf�k1,↓(τ )c−�k1+�q,↑(τ )c
†
�k2,↓f

†
−�k2+�q,↑〉. (18)

This definition has been used previously in a mean-field study of the Kondo lattice [19]. At
the RPA level the Cooper pair correlation function (17) is given by

�dd(�q, iωn) = 
dd
dd (�q, iωn) +

J

f c
cc (�q, iωn)


cc
f c(�q, iωn)

1 − J [
f c

cf (�q, iωn) + 

ff
cc (�q, iωn)]

, (19)

and the function (18) is given by

�cf (�q, iωn) = 
ff
cc (�q, iωn) +

J

f c

f c(�q, iωn)

ff
cc (�q, iωn)

[1 − J

f c

f c(�q, iωn)]2 + J 2[
ff
cc (�q, iωn)]2

. (20)

The 
(�q, iωn) functions appearing in the previous expressions are given by


cc
cc(�q, iωn) = 1

β

∑
�p,iωm

η2( �p)Gcc( �p, iωm)Gcc(− �p + �q, −iωm + iωn),


cc
f c(�q, iωn) = 1

β

∑
�p,iωm

η( �p)Gcc( �p, iωm)Gf c(− �p + �q, −iωm + iωn),


ff
cc (�q, iωn) = 1

β

∑
�p,iωm

Gff ( �p, iωm)Gcc(− �p + �q, −iωm + iωn),



f c

cf (�q, iωn) = 1

β

∑
�p,iωm

Gf c( �p, iωm)Gcf (− �p + �q, −iωm + iωn).

3. Superconducting and magnetic instabilities

The magnetic and superconducting instabilities of the system are signalled by the poles of
the corresponding susceptibilities. Therefore, we search for the temperature T at which the
denominators in the RPA expressions for the susceptibilities vanish:

Km( �Q, 0) = [1 − J 
̄
cf

f c(
�Q, 0)]2 − J 2
̄

ff

ff ( �Q, 0)
̄cc
cc (

�Q, 0), (21)

Kdd(0, 0) = 1 − J [
f c

cf (0, 0) + 
ff
cc (0, 0)], (22)

Kcf (0, 0) = [1 − J

f c

f c(0, 0)]2 + J 2[
ff
cc (0, 0)]2, (23)

where �Q = (π, π, π) and where Km( �Q, 0), Kdd(0, 0) and Kcf (0, 0) are the Stoner factors of
the correlation functions (16), (19) and (20), respectively. Since heavy-fermion materials are
antiferromagnetic materials we seek for poles of Km( �Q, 0) at the antiferromagnetic wavevector
�Q. From the definitions of the 
(�q, iωn) functions we see that the Cooper pair structure factor
η( �p) does not appear in the Stoner factors Kdd(0, 0) and Kcf (0, 0). Moreover, we shall
see below that the solutions to Kdd(0, 0) = 0 and Kcf (0, 0) = 0 lead to the same critical
temperature. Therefore, the system’s tendency for a certain Cooper pair symmetry only shows
up in the intensity of �dd(0, 0) or �cf (0, 0), which is controlled by the numerator of these
functions. We also see that both antiferromagnetism and superconductivity are controlled by
the same interaction parameter J , which, in turn, depends on hybridization only.

In figure 1 we show a plot of the Néel and superconducting temperatures as functions of
the total electronic density n. It is seen that antiferromagnetism can only occur in a very small
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Figure 1. Néel temperatures as functions of the electronic density n. The inset shows the
superconducting critical temperature as a function of n. The temperatures are normalized by
half the bandwidth, D = 6t and t = 1.

region of electronic density. Furthermore, the increase of TN when n → 2 corresponds to
an increase of the density of nf electrons towards the Kondo limit (nf = 1). It is also clear
that TN is not a monotonically increasing function of J . Upon reducing V , a larger range of
electronic densities can be reached where antiferromagnetic order can be found. From the
inset of figure 1 we see that the superconducting temperature Tc is very small (Tc ∼ TN/50)
close to the density region where the system exhibits antiferromagnetic order.

The dependence of the Néel and superconducting temperatures on pressure has been
measured in some heavy-fermion systems [4, 20, 21]. In those studies the Néel temperature
is found to decrease as the applied pressure increases and superconducting order is found
to develop in a limited range of applied pressures, when the Néel temperature is reduced
below ∼1 K. Let us now see how the critical temperatures in our model vary with the model
parameters which, in principle, should depend on externally applied pressure. Increasing
pressure should, presumably, make both the hybridization V and the conduction band hopping
t increase [22, 23]. In figure 2 we present TN and Tc versus V , taking the ratio V/t constant.
We see that above a certain value of V the magnetic order disappears but the superconducting
order remains. We also find that close to the region where the magnetic order vanishes, Tc is
much smaller than the maximum value attained by TN . This is in qualitative agreement with
experimental data on some cerium compounds (e.g. CeIn3), where the ratio TN/Tc ∼ 100.
Other examples are: CeCu2(Si1−xGex)2, where Tc as function of pressure displays a positive
curvature; and CeRhIn5, where the Tc-curve is almost parallel to the pressure axis [26]. For
CeCu2Ge2 and CeCu2Si2 the Tc-curve initially stays almost parallel to the pressure axis, but it
shoots up above a certain pressure [27]. Although Tc keeps increasing as V increases, it never
reaches values comparable with the maximum value of TN , even for unreasonable values of
V as we can see in the right panel of figure 2. We believe that a better treatment of the boson
propagator will lead to a decrease of Tc in agreement with the experiments. We remark that the
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Figure 2. Left: Néel temperature TN and superconducting critical temperature Tc as functions of
V , for a constant ratio of V/t = 1.2, electronic density n = 1.8 and ε0 = −0.25D. Right: Tc over
a very large (unphysical) range of values of V . Note that Tc � TN always. 〈cc〉 and 〈cf 〉 indicate
that Tc has been computed using equations (22) and (23), respectively. The two methods give the
same results.

above calculation of Tc is only valid in the situation where the system is non-magnetic because
we have not calculated Kdd(0, 0) or Kcf (0, 0) in the magnetically ordered phase. Furthermore,
when Tc is small, the approximation employed for the boson propagator should be improved
by including its low-energy part.

For comparison we also plot the temperature TK defined as the difference between the
renormalized f-level energy εf and the chemical potential [9–11]. This can be very different
from the lattice Kondo temperature [24] in the non-magnetic system. Nevertheless, the
combined behaviour of TN and TK presents the well-known Doniach form showing the interplay
between the RKKY and Kondo screening effects. For small values of V , TK is exponentially
small and the system shows antiferromagnetic order. On the other hand, as V increases
the Kondo temperature grows, leading to Kondo compensation of the f moments and to a
decreasing Néel temperature. For even larger values of V , complete disappearance of the
magnetic order takes place and the system shows paramagnetic behaviour (assuming there are
enough conduction electrons to compensate all the f local moments). We have also computed
the superconducting critical temperature from both equations (22) and (23) and obtained the
same Tc, as can be seen in the right panel of figure 2. Along the TN -curve, nf decreases from 1
to 0.8, as V increases, and nf ≈ 0.85 when TN is maximum.

Figures 1 and 2 show similar behaviours near the point where TN → 0. In both cases
Tc starts to increase with a positive curvature. Although in many heavy-fermion systems
Tc presents a negative curvature, there are examples where a positive curvature has been
observed, such as CePd2Si2 under chemical pressure (TN = 10 K, Tc = 0.2 K; therefore
TN/Tc = 50) [25].
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Since our treatment does not take competition between magnetism and superconductivity
into account, we cannot tell whether finite values of Tc and TN imply that both types of order
will be present at low temperature. Nevertheless, we found in previous work [23], at the
simplest mean-field level, that magnetism and superconductivity may coexist in the system. It
follows from the above remarks that the calculation of Tc when TN is finite requires both the
introduction of a better approximation for the boson propagator and extra electronic propagators
describing the antiferromagnetic order in the system, as was done in the description of spin
waves in the magnetically ordered Mott insulator [28].
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